187 research outputs found

    Aqueous Processes and Microbial Habitability of Gale Crater Sediments from the Blunts Point to the Glenn Torridon Clay Unit

    Get PDF
    A driving factor for sending the Mars Science Laboratory, Curiosity rover to Gale Crater was the orbital detection of clay minerals in the Glen Torridon (GT) clay unit. Clay mineral detections in GT suggested a past aqueous environment that was habitable, and could contain organic evidence of past microbiology. The mission of the Sample Analysis at Mars (SAM) instrument onboard Curiosity was to detect organic evidence of past microbiology and to detect volatile bearing mineralogy that can inform on whether past geochemical conditions would have supported microbiological activity. The objective of this work was to 1) evaluate the depositional/alteration conditions of Blunts Point (BP) to GT sediments 2) search for evidence of organics, and 3) evaluate microbial habitability in the BP, Vera Rubin Ridge (VRR), and GT sedimentary rock

    Behavioural and pathomorphological impacts of flash photography on benthic fishes

    Get PDF
    Millions of people take animal pictures during wildlife interactions, yet the impacts of photographer behaviour and photographic flashes on animals are poorly understood. We investigated the pathomorphological and behavioural impacts of photographer behaviour and photographic flashes on 14 benthic fish species that are important for scuba diving tourism and aquarium displays. We ran a field study to test effects of photography on fish behaviour, and two laboratory studies that tested effects of photographic flashes on seahorse behaviour, and ocular and retinal anatomy. Our study showed that effects of photographic flashes are negligible and do not have stronger impacts than those caused solely by human presence. Photographic flashes did not cause changes in gross ocular and retinal anatomy of seahorses and did not alter feeding success. Physical manipulation of animals by photographing scuba divers, however, elicited strong stress responses. This study provides important new information to help develop efficient management strategies that reduce environmental impacts of wildlife tourism

    Evidence for Smectite Clays from MSL SAM Analyses of Mudstone at Yellowknife Bay, Gale Crater, Mars

    Get PDF
    Drilled samples of mudstone from the Sheepbed unit at Yellowknife Bay were analyzed by MSL instruments including the Sample Analysis at Mars (SAM) and Chemistry and Mineralogy (CheMin) instruments in MSL's Analytical Laboratory. CheMin analyses revealed the first in situ X-ray diffraction based evidence of clay minerals on Mars, which are likely trioctahedral smectites (e.g., saponite) and comprise approx 20% of the mudstone sample (e.g., Bristow et al., this meeting). SAM analyses, which heated the mudstone samples to 1000 C and monitored volatiles evolved to perform in situ evolved gas analysis mass spectrometry (EGA-MS), resulted in a H2O trace exhibiting a wide evolution at temperatures < 500 C, and an evolution peak at higher temperatures near approx 750 C. The low temperature H2O evolution has many potential contributors, including adsorbed H2O, smectite interlayer H2O, and structural H2O/OH from bassanite and akaganeite (identified by CheMin) and H2O/OH from amorphous phases in the sample. The high temperature H2O is consistent with the evolution of H2O from the dehydroxylation of the smectite clay mineral. Comparison to EGA-MS data collected under SAM-like conditions on a variety of clay mineral reference materials indicate that a trioctahedral smectite, such as saponite, is most consistent with the high temperature H2O evolution observed. There may also be SAM EGA-MS evidence for a small high temperature H2O evolution from scoop samples from the Yellowknife Bay Rocknest sand shadow bedform. As in the mudstone samples, this evolution may indicate the detection of smectite clays, and the idea that minor clays may be present in Rocknest materials that could be expected to be at least partially derived from local sources is reasonable. But, because smectite clays were not definitively observed in CheMin analyses of Rocknest materials, they must be present at much lower abundances than the approx 20% observed in the mudstone samples. This potential detection underscores the complementary nature of the MSL CheMin and SAM instruments for investigations of martian sample mineralogy. Information on the nature of Yellowknife Bay clay minerals may also be available from the detection of H2 evolved during SAM EGA-MS at high temperature. A likely source of at least some of this H2 is H2O evolved from the smectite clays at high temperature, and it is possible these evolutions can be used in a similar fashion to high temperature H2O releases to provide constraints on the clay minerals in a sample. In addition, the D/H of this high temperature H2, as well as the H2O, can be derived from SAM MS and Tunable Laser Spectrometer (TLS) data, respectively. These D/H values may help to inform the provenance of high and low temperature water evolved from martian sample

    MicroRNA-138 and microRNA-25 down-regulate mitochondrial calcium uniporter, causing the pulmonary arterial hypertension cancer phenotype

    Get PDF
    Rationale: Pulmonary arterial hypertension (PAH) is an obstructive vasculopathy characterized by excessive pulmonary artery smooth muscle cell (PASMC) proliferation, migration, and apoptosis resistance. This cancer-like phenotype is promoted by increased cytosolic calcium ([Ca2+]cyto), aerobic glycolysis, and mitochondrial fission. Objectives: To determine how changes in mitochondrial calcium uniporter (MCU) complex (MCUC) function influence mitochondrial dynamics and contribute to PAH’s cancer-like phenotype. Methods: PASMCs were isolated from patients with PAH and healthy control subjects and assessed for expression of MCUC subunits. Manipulation of the pore-forming subunit, MCU, in PASMCs was achieved through small interfering RNA knockdown or MCU plasmid-mediated up-regulation, as well as through modulation of the upstream microRNAs (miRs) miR-138 and miR-25. In vivo, nebulized anti-miRs were administered to rats with monocrotaline-induced PAH. Measurements and Main Results: Impaired MCUC function, resulting from down-regulation of MCU and up-regulation of an inhibitory subunit, mitochondrial calcium uptake protein 1, is central to PAH’s pathogenesis. MCUC dysfunction decreases intramitochondrial calcium ([Ca2+]mito), inhibiting pyruvate dehydrogenase activity and glucose oxidation, while increasing [Ca2+]cyto, promoting proliferation, migration, and fission. In PAH PASMCs, increasing MCU decreases cell migration, proliferation, and apoptosis resistance by lowering [Ca2+]cyto, raising [Ca2+]mito, and inhibiting fission. In normal PASMCs, MCUC inhibition recapitulates the PAH phenotype. In PAH, elevated miRs (notably miR-138) down-regulate MCU directly and also by decreasing MCU’s transcriptional regulator cAMP response element–binding protein 1. Nebulized anti-miRs against miR-25 and miR-138 restore MCU expression, reduce cell proliferation, and regress established PAH in the monocrotaline model. Conclusions: These results highlight miR-mediated MCUC dysfunction as a unifying mechanism in PAH that can be therapeutically targeted

    Challenging the Science Curriculum Paradigm: TeachingPrimary Children Atomic-Molecular Theory

    Get PDF
    Solutions to global issues demand the involvement of scientists, yet concern exists about retention rates in science as students pass through school into University. Young children are curious about science, yet are considered incapable of grappling with abstract and microscopic concepts such as atoms, sub-atomic particles, molecules and DNA. School curricula for primary (elementary) aged children reflect this by their limitation to examining only what phenomena are without providing any explanatory frameworks for how or why they occur. This research challenges the assumption that atomic-molecular theory is too difficult for young children, examining new ways of introducing atomic theory to 9 year olds and seeks to verify their efficacy in producing genuine learning in the participants. Early results in three cases in different schools indicate these novel methods fostered further interest in science, allowed diverse children to engage and learn aspects of atomic theory, and satisfied the children’s desire for intellectual challenge. Learning exceeded expectations as demonstrated in the post-interview findings. Learning was also remarkably robust, as demonstrated in two schools eight weeks after the intervention, and in one school, one year after their first exposure to ideas about atoms, elements and molecules

    Sulfur-bearing phases detected by evolved gas analysis of the Rocknest aeolian deposit, Gale Crater, Mars

    Get PDF
    The Sample Analysis at Mars (SAM) instrument suite detected SO_2, H_(2)S, OCS, and CS_2 from ~450 to 800°C during evolved gas analysis (EGA) of materials from the Rocknest aeolian deposit in Gale Crater, Mars. This was the first detection of evolved sulfur species from a Martian surface sample during in situ EGA. SO_2 (~3–22 ”mol) is consistent with the thermal decomposition of Fe sulfates or Ca sulfites, or evolution/desorption from sulfur-bearing amorphous phases. Reactions between reduced sulfur phases such as sulfides and evolved O_2 or H_(2)O in the SAM oven are another candidate SO_2 source. H_(2)S (~41–109 nmol) is consistent with interactions of H_(2)O, H_2 and/or HCl with reduced sulfur phases and/or SO2 in the SAM oven. OCS (~1–5 nmol) and CS2 (~0.2–1 nmol) are likely derived from reactions between carbon-bearing compounds and reduced sulfur. Sulfates and sulfites indicate some aqueous interactions, although not necessarily at the Rocknest site; Fe sulfates imply interaction with acid solutions whereas Ca sulfites can form from acidic to near-neutral solutions. Sulfides in the Rocknest materials suggest input from materials originally deposited in a reducing environment or from detrital sulfides from an igneous source. The presence of sulfides also suggests that the materials have not been extensively altered by oxidative aqueous weathering. The possibility of both reduced and oxidized sulfur compounds in the deposit indicates a nonequilibrium assemblage. Understanding the sulfur mineralogy in Rocknest materials, which exhibit chemical similarities to basaltic fines analyzed elsewhere on Mars, can provide insight in to the origin and alteration history of Martian surface materials

    Structural Requirements for Dihydrobenzoxazepinone Anthelmintics:Actions against Medically Important and Model Parasites: Trichuris muris, Brugia malayi, Heligmosomoides polygyrus, and Schistosoma mansoni

    Get PDF
    Nine hundred million people are infected with the soil-transmitted helminths Ascaris lumbricoides (roundworm), hookworm, and Trichuris trichiura (whipworm). However, low single-dose cure rates of the benzimidazole drugs, the mainstay of preventative chemotherapy for whipworm, together with parasite drug resistance, mean that current approaches may not be able to eliminate morbidity from trichuriasis. We are seeking to develop new anthelmintic drugs specifically with activity against whipworm as a priority and previously identified a hit series of dihydrobenzoxazepinone (DHB) compounds that block motility of ex vivo Trichuris muris. Here, we report a systematic investigation of the structure–activity relationship of the anthelmintic activity of DHB compounds. We synthesized 47 analogues, which allowed us to define features of the molecules essential for anthelmintic action as well as broadening the chemotype by identification of dihydrobenzoquinolinones (DBQs) with anthelmintic activity. We investigated the activity of these compounds against other parasitic nematodes, identifying DHB compounds with activity against Brugia malayi and Heligmosomoides polygyrus. We also demonstrated activity of DHB compounds against the trematode Schistosoma mansoni, a parasite that causes schistosomiasis. These results demonstrate the potential of DHB and DBQ compounds for further development as broad-spectrum anthelmintics

    Abiotic Input of Fixed Nitrogen by Bolide Impacts to Gale Crater During the Hesperian : Insights From the Mars Science Laboratory

    Get PDF
    We acknowledge the NASA Mars Science Laboratory Program, Centre National d'Études Spatiales, the Universidad Nacional AutĂłnoma de MĂ©xico (PAPIIT IN109416, IN111619, and PAPIME PE103216), and the Consejo Nacional de Ciencia y TecnologĂ­a de MĂ©xico (CONACyT 220626) for their support. We thank Fred Calef for constructing Figure 4 and appreciate the interest and support received from John P. Grotzinger and Joy A. Crisp throughout the Curiosity mission. The authors are grateful to the SAM and MSL teams for successful operation of the SAM instrument and the Curiosity rover. The data used in this paper are listed in the supporting information, figures, and references. SAM Data contained in this paper are publicly available through the NASA Planetary Data System at http://pds‐geosciences.wustl.edu/missions/msl/sam.htm. We would like to express gratitude to Pierre‐Yves Meslin from the Research Institute in Astrophysics and Planetology at Toulouse, France, and five anonymous reviewers whose comments/suggestions on earlier drafts helped improve and clarify this manuscript. The authors declare no conflicts of interests.Peer reviewedPublisher PD

    Climate change impacts on the coral reefs of the UK Overseas Territory of the Pitcairn Islands: Resilience and adaptation considerations

    Get PDF
    The coral reefs of the Pitcairn Islands are in one of the most remote areas of the Pacific Ocean, and yet they are exposed to the impacts of anthropogenic climate change. The Pitcairn Islands Marine Protected Area was designated in 2016 and is one of the largest in the world, but the marine environment around these highly isolated islands remains poorly documented. Evidence collated here indicates that while the Pitcairn Islands' reefs have thus far been relatively sheltered from the effect of warming sea temperatures, there is substantial risk of future coral decalcification due to ocean acidification. The projected acceleration in the rate of sea level rise, and the reefs' exposure to risks from distant ocean swells and cold-water intrusions, add further uncertainty as to whether these islands and their reefs will continue to adapt and persist into the future. Coordinated action within the context of the Pitcairn Islands Marine Protected Area can help enhance the resilience of the reefs in the Pitcairn Islands. Options include management of other human pressures, control of invasive species and active reef interventions. More research, however, is needed in order to better assess what are the most appropriate and feasible options to protect these reefs
    • 

    corecore